

Il Semester M.Com. Degree Examination, July 2017 (CBCS) COMMERCE

Paper - 2.5 : Operation Research and Quantitative Techniques

Time: 3 Hours Max. Marks: 70

SECTION - A

Answer any seven of the following sub-questions in about 3-4 lines each.
 Each sub-question carries two marks: (7×2=14)

- a) Define linear programming.
- b) What is non-degenerate Basic Feasible Solution?
- c) What do you mean by model with one price break?
- d) What do you mean by probability?
- e) Define the term capital budgeting.
- f) What do you mean by Independent Float?
- g) Define Operational Research.
- h) What do you mean by decision tree analysis?
- i) State the uses of EOQ.
- j) What is EMV under Decision Theory?

SECTION - B

Answer four of the following in about one page. Each question carries 5 marks :

 $(4 \times 5 = 20)$

- 2. "PERT provides the framework with which a project can be described, scheduled and the controlled" Discuss.
- 3. 12 'one rupee' coins are distributed at random among 5 beggars A, B, C, D and E. Find the probability that :
 - i) They get 4, 2, 0, 5 and 1 coins respectively
 - ii) Each beggar gets at least two coins and
 - iii) None of them goes empty handed.

P.T.O.

- 4. Evalois the 199
- Explain the different types of risks faced by the entrepreneur regarding capital budgeting.
- 5. In a plant layout, four different machines M1, M2, M3 and M4 are to be erected in a machine shop. There are five vacant areas A, B, C, D and E. Because of limited space, Machine M2 cannot be erected at area C and Machine M4 cannot be erected at area A. The cost of erection of machines is given below:

- 6. Explain what is meant by probability distribution of a random variable? How is it useful in decision making?
- Geetha Perfume Company produces both perfumes and body spray from two flower extracts F1 and F2. The following data is provided:

Liters of Extract							
	Perfume	Body Spray	Daily Availability (Itrs)				
Flower Extract, F1	8	4	20				
Flower Extract, F2	2	3	8				
Profit per litre (Rs.)	7	5					

The maximum daily demand of body spray is 20 bottles of 100 ml each. A market survey indicates that the daily demand of body spray cannot exceed that of perfume by more than 2 litres. The company wants to find out the optimal mix of perfume and body spray that maximizes the total daily profit. Formulate the problem as a linear programming model.

SECTION - C

Answer any three of the following. Each question carries 12 marks: (3×12=36)

- 8. What is decision making under uncertainty? Describe the methods which are useful for decision-making under uncertainty.
- 9. Solve the following LPP by graphical method:

Minimize Z =
$$18x_1 + 12x_2$$

Subject to constraints, $2x_1 + 4x_2 \le 60$
 $3x_1 + x_2 \ge 30$
 $8x_1 + 4x_2 \ge 120$
Where $x_1, x_2 \ge 0$.

10. Draw the network for the following project given in Table below:

Activity	Preceded by Initial activity	Duration (weeks)		
Α		10		
В	A	9		
С	Α .	7		
D	В	6		
E	В	12		
F	С	6		
G	С	8		
Н	F	8		
1	D	4		
J	g, h	11		
K	Е	5		
L		7		

Number the events by Fulkerson's rule and find the critical path. Also find the time for completing the project.

- 11. What is Monte Carlo simulation? Explain how simulation is useful in solving queuing and inventory problems.
- 12. Determine an initial basic feasible solution for the following TP, using the least cost method.

	D ₁	D ₂	D ₃	D ₄	Supply
0,	6	4	1	5	14
02	8	9	2	7	16
O ₃	4	§ 3	6	2	5
Demand	6	10	15	4	35